
WRDC-TR-90-8007 (9
Volume VIII ./
Part 38

AD- A248 977

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume VIII - User Interface Subsystem
Part 38 - Electronic Documentation System (EDS) Development
Specification

S. Barker, F. Glandorf

Control Data Corporation D T I
Integration Technology Services
2970 Presidential Drive wLw r

Fairborn, OH 45324-6209 APRZ I19MRST1E
September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

92-10047

MANUFACTURING TECHNOLOGY DIRECTORATE l
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

92 4 20 0"

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoeve, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.
This report is releasable to the National Technical
Information Service (1IlS). it OIlS, it viii be
available to the general public, including foreign nations

DA D L. J!SON, Pr ect Manager DATE
WRIP/M/f

Wri t-Pat rsAFB, OH 45433-6533

FOR THE COMMANDER:

RUCE A. RASMUSSEN, Chief DATE
WRDC/MT
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

Unclassified

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for Public Release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

DS 620344900 WRDC-TR- 90-8007 Vol. VIII, Part 38

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
2970 Presidential Drive
Fairborn, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)Wright Research and Development Center, F33600-87-C-0464

Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

78011 F 595600 F95600 20950607Electroni .,pecification _________________________

2. PERSONAL AUTHOR(S)
Structural Dynamics Research Corporation: Barker, S., Glandorf, F.

3a. TYPE OF REPORT [13b. TIME COVERED 14. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 4/1/87-12/31/0 1990 September 30 61

6. SUPPLEMENTARY NO,

WRDC/MTI Project Priority 6203

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.

1308 0905

19. ABSTRACT (Continue on reverse if necessary and identify block nLrnber)

This specification establishes the development, test, and performance requirements of an integrated set of computer
programs know as the Electronic Documentation System.

BLOCK 11:

INTEGRATED INFORMATION SUPPORT SYSTEM
Vol VIII -User Interface Subsystem

Part 38 - Electronic Documentation System (EDS) Development Specification

.0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

JNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

?2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c. OFFICE SYMBOL
(Indude Area Code)

David L. Judson (513) 255-7371 WRDC/MTI

EDITION OF 1 JAN 73 IS OBSOLETE
DD FORM 1473,83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

DS 620344900

30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Integration Technology Division, through Mr. David L.
Judson, Project Manager. The Prime Contractor was Integration
Technology Services, Software Programs Division, of the Control
Data Corporation, Dayton, Ohio, under the direction of Mr. W.A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. J. P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS). The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall
Common Data Model design
development and implementation,
IISS integration and test, and
technology transfer of IISS.

D. Appleton Company Responsible for providing
software information services for
the Common Data Model and IDEFIX
integration methodology.

ONTEK Responsible for defining and
testing a representative
integrated system base in
Artificial Intelligence
techniques to establish fitness
for use.

Simpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User interfaces,
Research Corporation Virtual Terminal Interface, and

Network Transaction Manager
design, development,
implementation, and support.

Arizona State University Responsible for test bed
operations and support.

iii

DS 620344900
30 September 1990

TABLE OF CONTENTS

Page

SECTION 1.0 SCOPE .. 1-1
1.1 Identification 1-1
1.2 Functional Summary 1-1

SECTION 2.0 DOCUMENTS 2-1
2.1 Reference Documents 2-1
2.2 Terms and Abbreviations 2-1

SECTION 3.0 REQUIREMENTS 3-1
3.1 Computer Program Definition 3-1
3.1.1 System Capacities 3-1
3.1.2 Interface Requirements 3-1
3.1.2.1 Detailed Interface Definition 3-1
3.1.2.1.1 User Interaction 3-3
3.1.2.1.2 External File Processing 3-4
3.1.2.1.3 IISS Application Programs 3-4
3.1.2.1.4 Virtual Terminal 3-4
3.1.2.1.5 Neutral Data Manipulation

Language - NDML 3-4
3.1.2.1.6 Standard Generalized Markup Language

(ISO/8879) 3-4
3.1.2.1.7 Office Document Architecture/Office

Equipment Interchange Format
(ODA/ODIE - ISO 8613) 3-5

3.1.2.1.8 Computer Graphics Metafile (CGM - ANSI
X3.122) 3-5

3.2 Detailed Functional Requirements 3-5
3.2.1 Document Processing Model 3-6
3.2.1.1 Editing Stage 3-6
3.2.1.2 Formatting Stage 3-7
3.2.1.3 Imaging Stage 3-7
3.2.2 EDS Functions 3-8
3.2.3 EDS Application Programs 3-9
3.2.3.1 Document Type Definition Builder 3-9
3.2.3.1.1 Inputs 3-10
3.2.3.1.2 Outputs 3-10
3.2.3.1.3 Processing 3-10
3.2.3.1.3.1 DTD Directory Form 3-10
3.2.3.1.3.2 Document Hierarchy Form3-11
3.2.3.1.3.3 Document Hierarchy Menu Form 3-13
3.2.3.1.3.4 Document Hierarchy Subordinate Form. 3-14
3.2.3.1.3.5 Document Hierarchy Attribute Form... 3-15
3.2.3.1.3.6 Document Hierarchy Where Used Form . 3-16
3.2.3.1.3.7 Graph Capability in DTDBLD 3-16
3.2.3.2 SGML Tagger 3-17
3.2.3.2.1 Inputs 3-18
3.2.3.2.2 Outputs 3-18
3.2.3.2.3 Processing 3-19
3.2.3.2.3.1 Tagger Specification Screens 3-20
3.2.3.2.3.2 State Definitions 3-20
3.2.3.2.3.3 Character Class Definition Form 3-21

iv

DS 620344900
30 September 1990

TABLE OF CONTENTS (Continued)

Page

3.2.3.2.3.4 Pattern/State/Action Definition Form 3-22
3.2.3.2.3.5 C Definition Form 3-22
3.2.3.2.3.6 Pattern Specification Syntax 3-23
3.2.3.3 SGML Parser 3-25
3.2.3.3.1 Inputs 3-26
3.2.3.3.2 Outputs 3-26
3.2.3.3.3 Processing 3-26
3.2.3.4 SGML Context-Directed Editor (CDE) 3-27
3.2.3.4.1 Inputs 3-27
3.2.3.4.2 Outputs 3-28
3.2.3.4.3 Processing 3-28
3.2.3.4.3.1 CDE Modes 3-28
3.2.3.4.3.2 CDE Document Editing 3-29
3.2.3.4.3.3 Logical Element Editing 3-32
3.2.3.4.3.4 Document Creation 3-32
3.2.3.4.3.5 Optional and Required Logical

Elements 3-32
3.2.3.4.3.6 Using Entity Names in Documents 3-32
3.2.3.4.3.7 Assigning Attributes to Logical

Elements 3-34
3.2.3.5 SGML Layout Macro Builder 3-34
3.2.3.5.1 Inputs 3-35
3.2.3.5.2 Outputs 3-35
3.2.3.5.3 Processing 3-35
3.2.3.5.3.1 DTD Selection Form 3-35
3.2.3.5.3.2 Document Profile Form 3-36
3.2.3.5.3.3 Macro Selection Form 3-37
3.2.3.5.3.4 Format Selection 3-39
3.2.3.6 SGML Formatter 3-41
3.2.3.6.1 Inputs 3-41
3.2.3.6.2 Outputs 3-41
3.2.3.6.3 Processing 3-41
3.2.3.7 Graphics File Translation 3-44
3.2.3.8 Text File Translation 3-44
3.3 Performance Requirements 3-44
3.3.1 Program Organization 3-44

SECTION 4.0 QUALITY ASSURANCE PROVISIONS 4-1
4.1 Introduction and Definitions 4-1
4.2 Computer Programming Test and Evaluation ... 4-1

SECTION 5.0 PREPARATION FOR DELIVERY 5-1

v

DS 620344900

30 September 1990

LIST OF ILLUSTRATIONS

Figure Title Page

3-1 EDS Interface Diagram 3-2
3-2 EDS Application Interface 3-3
3-3 Document Processing Model 3-6
3-4 EDS Main Menu Screen 3-8
3-5 DTDBLD DTD Directory Form 3-10
3-6 Graph of Document Hierarchy for a Book 3-11
3-7 Sample Document Hierarchy for BOOK 3-12
3-8 DTD Document Hierarchy Menu Screen 3-14
3-9 Document Hierarchy Subordinate Form 3-14
3-10 DTDBLD Application Keypad 3-15
3-11 Document Hierarchy Attribute Definition Form 3-16
3-12 Tagger Main Menu 3-19
3-13 State Definition Form 3-20
3-14 Character Class Definition Form 3-21
3-15 Pattern/State/Action Definition Form 3-22
3-16 C Declaration Definition Form 3-23
3-17 CDE File Input Form 3-28
3-18 CDE Application Keypad 3-29
3-19 CDE Document Editing Screen 3-29
3-20 Display Tags Form 3-30
3-21 Display Entity Form 3-33
3-22 Display Attribute Form 3-34
3-23 Layout Editor - DTD Selection Screen 3-36
3-24 Document Profile Screen 3-37
3-25 Macro Selection Form 3-38
3-26 Tree Representation of DTD Segment 3-39
3-27 Format Selection Form 3-40
3-28 Formatter Input Form 3-42

vi

DS 620344900
30 September 1990

SECTION 1

SCOPE

1.1 Identification

' This specification establishes the development, test, and
performance requirements of an integrated set of computer
programs collectively known as the Electronic Documentation
System, referred to as EDS.

1.2 Functional Summary

The Electronic Documentation System is intended to support
the movement of a compound document through the document life
cycle. Document life cycle phases are editing the document
(creation/revision), formatting the document, imaging or
printing the document, storing the document, and possible
transfer of the document. The proposed system will include
computer programs which will assist in these life cycle steps.
Application programs and software tools defined below are
designed to operate upon a document so as to prepare it to move
or to actually move it from one phase in the document life cycle
to another.

EDS is designed to process documents which have the
following major characteristics:

o They have a well-defined logical structure.
o They can be composed of different content types

(text, graphics, etc.).

A well-defined logical structure is a definition of which
logical elements (paragraphs, sections, chapters) must be
present in a document, and the order in which they must occur.
A primary function of EDS is to provide mechanisms which enforce
conformance to a predefined logical structure. This
functionality enables EDS to support environments where
documents must be written to specific standards, such as the
ICAM standards. While EDS is designed to support the
formatting, imaging, transfer, and storage of compound
documents, it does not currently support compound document
editing.

The operational philosophy of EDS is that the author of a
document need not be concerned with the layout of the document.
The primary concern for the author is document content and
conformance to a document standard if one exists for the
document being written. Once the logical structure and content
are complete, the document can then be formatted and imaged
using multiple presentation styles on multiple devices.

1-1

DS 620344900
30 September 1990

As previously mentioned, EDS is composed of an integrated
set of software tools and application programs that operate upon
a document during various stages in the document processing
cycle. The major functions of EDS, along with the name of the
programs which support these functions, are listed below.
Detailed descriptions of each of these application programs (AP)
are found in Section 3 of this document.

DTDBLD Create/revise document type definitions that define
which logical elements may occur and the order in
which they must occur within a document.

TAGGER Convert existing word processing documents to a
"logical structure only" format.

PARSER Check specific documents for conformance to a
documentation standard via the document type
definition created by DTDBLD.

LMEDIT Create/revise formatting macros for a document class.
Formatting macros contain instructions which define
how the document will look (its presentation style)
when the document is imaged.

DOCFMT Prepare a compound document for imaging. Text and
graphics within the document are merged with document
formatting commands.

CDE Guide a user through the creation of a document by
using the document type definition as a model for what
the logical structure of the document should contain.

VIRTRM Provide a virtual terminal which accepts neutral
Virtual Terminal commands used to format the document.

DEVDVR Convert Virtual Terminal commands to device-specific
commands.

GRATRA Provide graphics translation utilities from external
graphics formats into Postscript EPS format.

Accession For Y

ITIS GRA&I o
DTIC TAB 0
Unanounced 0
Juatificatio

Availability0oast
Avail and/or'

lot Ispcial

I1-2

DS 620344900
30 September 1990

SECTION 2

DOCUMENTS

2.1 References Documents

[1] Systran, ICAM Documentation Standards, IDS150120000C,
15 September 1983.

[2] International Organization for Standardization,
Information Processing - Text and Office Systems -
Standard Generalized Markup Language (SGML), ISO 8879,
15 October 1986.

[3] International Organization for Standardization, Office
Document Architecture/Office Document Interchange
Format, ISO/DP 8613/1-6, October 1985 (Draft).

[4] American National Standards Institute, American
National Standard for Information Systems - Computer
Graphics - Metafile for the Storage and Transfer of
Picture Description Information, ANSI X/3.122-1986,
August 27, 1986.

[5] Structural Dynamics Research Corporation, Form
Processor User's Manual, UM 620344200A, 31 May 1988.

[6] Structural Dynamics Research Corporation, Virtual
Terminal Operator Guide, OM 620244000A, 31 May 1988.

[7] M.E. Lesk, LEX - Lexical Analyzer Generator, IS
Workbench for VAX/VMS Programmers Guide.

[8] Structural Dynamics Research Corporation, Form
Processor Development Specification, DS 620344700A,
March 31, 1988.

2.2 Terms and Abbreviations

American Standard Code for Information Interchange (ASCII):
The character set defined by ANSI x3.4 and used by most computer
vendors.

Att ibute: A characteristic used to qualify an element
within a document.

Backus-Naur Form (BNF): A widely used notation form
specifying the syntax of a language.

Character Set: A mapping of a character repertoire onto a
code set such that each character is associated with its coded
representation.

2-1

DS 620344900
30 September 1990

Common Data Model (CDM): Describes common data application
process formats, form definitions, etc., of the IISS and
includes conceptual, external, and internal schemas, and schema
transformation operators.

Compound Document: A document which may contain mixed
content (text, graphics, etc.).

Computer Graphics Metafile (CGM): A standard file format
for the storage and retrieval of picture description
information.

Computer Program Configuration Item (CPCI): An aggregation
of computer programs or any of their discrete portions, which
satisfies an end-use function.

Conforminq SGML Application: An SGML application that
requires documents to be conforming SGML documents, and whose
documentation meets the requirements of this International
Standard.

Conforming SGML Document: AN SGML document that complies
with all provisions of this International Standard.

Context-Directed Editor: An EDS application which guides
the user through the process of document creation and reviEion
by using the document type definition as a model for which
logical elements may be included in the document.

Cursor Position: The position of the cursor after any
command is issued.

Descriptive Markup: Information added to a document that
enables an application program to process the document.

Device Driver (DD): Software modules written to handle I/O
for a specific kind of terminal. The modules map
terminal-specific commands and data to a neutral format. Device
Drivers are part of the UI Virtual Terminal.

Document Type Definition (DTD): Rules determined by an
application that apply SGML to the markup of documents of a
particular type. A document type definition includes a formal
specification, expressed in a document type declaration, of the
element types, element relationships and attributes, and
references that can be represented by markup. it thereby
defines the vocabulary of the markup for which SCML defines the
syntax. A DTD can also include comments that describe the
semantics of elements and attributes, and any application
conventions.

Electronic Documentation System (ED L: An integrated set
of software tools and application programs which operate upon a
document through various stages of a document life cycle
consisting of editing (creating/revising), formatting, imaging,
storage, and transfering.

2-2

DS 620344900
30 September 1990

Element: A component of the hierarchical structure defined
by a document type definition; it is identified in a document
instance by descriptive markup, usually a start-tag and end-tag.

Element Declaration: A markup declaration that contai s
the formal specification of the part of an element type
definition that deals with the content and markup minimization.

Entity: A collection of characters that can be referenced

as a unit.

Field: Two-dimensional space on a terminal screen.

Form: A structured view which may be imposed on windows or
other forms. A form is composed of fields. These field& may be
defined as forms, items, or windows.

Form Definition (FD): Form definition Language after
compilation. It is read at run-time by the Form Processor.

Form Definition Language (FDL): The language in which
electroni-c forms are defined.

Form Editor (FE): A subset of the IISS User Interface that
is used to create definitions of forms. The FE consists of the
Forms Driven Form Editor and the Forms Language Compiler.

Form Hierarchy: A graphic representation of the way in
which forms, items, and windows are related to their parent
form.

Form Language Compiler (FLAN): A subset of the FE that
consists of a batch process that accepts a series of form
definition language statements and produces form definition
files as output.

Form Processor (FP): A subset of the IISS User Interface
that consists of a set of callable execution-time routines
available to an application program for form processing.

Forms Driven Form Editor (FDFE): A subset of the FE which
consists of a forms-driven application used to create Form
Definition files interactively.

Imaging: The printing of a document.

IISS Function Screen: The first screen that is displayed
after logon. It allows the user to specify the function to
access and the device type and device name on which to work.

Integrated Information Support System (IISS): A test
computing environment used to investigate, demonstrate, and test
the concepts of information management and information
integration in the context of Aerospace Manufacturing. The IISS
addresses the problems of integration of data resident on
heterogeneous data bases supported by heterogeneous computers
interconnected via a Local Area Network.

2-3

DS 620344900
30 September 1990

Item: A non-decomposable area of a form in which
hard-coded descriptive text may be placed and the only defined
areas where user data may be input/output.

Layout Style: The specification of format and presentation
for logical elements.

Layout Structure: The hierarchy of all layout elements
(pages, frames, blocks, etc.) for a document.

Logical Structure: The hierarchy of all logical elements
(paragraphs, sections, etc.) within a document.

Look-Ahead LR (LALR): An effecient, bottom-up parsing
technique.

Message: Descriptive text which may be returned in the
standard message line on the terminal screen. Messages are used
to warn of errors or provide other user information.

Message Line: A line on the terminal screen that is used
to display messages.

Neutral Data Definition Lanquaqe (NDDL): A language used
to manipulate and populate information in the Common Data Model
(CDM) or IISS System Database.

Neutral Data Manipulation Language (NDML): A language
developed by the IISS project to provide uniform access to
common data, regardless of data base manager or distribution
criteria. It provides distributed retrieval and single node
update.

Office Document Architecture (ODA): A standard which
supports the interchange of electronic compound documents in
such a way as to allow their imaging, processing, or
reformatting.

Office Document Interchange Format (ODIF): A standard for
encoding document structures defined by the ODA which would
enable the exchange of compound documents between systems
operating within a MAP/TOP environment.

Operating System (OS): Software supplied with a computer
which allows it to supervize its own operations and manage
access to hardware facilities such as memory and peripherals.

Page: Instance of forms in windows that are created
whenever a form is added to a window.

Paging and Scrolling: A method which allows a form to
contain more data than can be displayed at one time with
provisions for viewing any portion of the data buffer.

2-4

DS 620344900
30 September 1990

Parser: An application program that determines how closely
a document conforms to a document type definition which defines
a specific documentation standard.

Physical Device: A hardware terminal.

Previous Cursor Position: The position of the cursor when
the previous edit command was issued.

Qualified Name: The name of a form, item, or window
preceded by the hierarchy path so that it is uniquely
identified.

Standard Generalized Markup Language (SGML): A language
for describinq document structures, consisting of descriptive
markup which is added to a document to indicate where logical
elements such as sections and paragraphs begin and end.

Subform: A form that is used within another form.

Tag: Descriptive markup indicating the start or end of a
logical element.

Tagger: An application program which provides a mechanism
for automatically tagging existing documents which have been
created by word processing systems.

User Data: Data which is either input by the user or
output by the application programs to items.

User Interface (UI): IISS subsystem that controls the
user's terminal and interfaces with the rest of the system. The
UI consists of two major subsystems: The User Interface
Development System (UIDS) and the User Interface Management
System (UIMS).

User Interface Management System (UIMS): The run-time UI.
It consists of the Form Processor, Virtual Terminal, Application
Interface, the User Interface Services, and the Text Editor.

User Interface Services (UIS): A subset of the IISS User
Interface that consists of a package of routines that aid users
in controlling their environment. It includes message
manaqement, change password, and application definition
services.

User Interface/Virtual Terminal Interface (UI/VTI):
Another name for the User Interface.

Virtual Terminal (VT): A subset of the IISS User Interface
that performs the interfacing between different terminals and
the UI. This is done by defining a specific set of terminal
features and protocols which must be supported by the UI
software which constitutes the virtual terminal definition.
Specific terminals are then mapped against the virtual terminal
software by specific software modules written for each type of
real terminal supported.

2-5

DS 620344900
30 September 1990

Virtual Terminal Interface (VTI): The callable interface
to the VT.

Window: Dynamic area of a terminal screen on which
predefined forms may be placed at run-time.

Window Manager: A facility which allows the following to
be manipulated: size and location of windows, the device on
which an application is running, the position of a form within a
window. It is part of the Form Processor.

Yet Another Compiler Compiler (YACC): An LALR parser
generator.

2-6

DS 620344900
30 September 1990

SECTION

REQUIREMENTS

3.1 Computer Program Definition

The Electronic Documentation System provides an integrated
set of tools that enable the creation and revision of compound
documents with a well-defined logical and layout structure.

3.1.1 System Capacities

EDS operates in the IISS environment on those hosts which
support IISS.

It is capable of accepting input from and producing output
for those devices which are supported within the IISS
environment.

3.1.2 Interface Requirements

EDS interfaces with other IISS application programs by
accepting graphical and textual input from these programs for
inclusion into EDS documents. EDS includes application programs
which translate external graphical and textual information into
the standard file formats used by EDS. The file formats used by
EDS will be based on current standards designated for document
processing and exchange, as well as device-independent storage
of graphics files.

EDS application programs which require user input use the
User Interface Form Processor as a mechanism for accepting and
validating user input.

3.1.2.1 Detailed Interface Definition

As shown in Figure 3-1, in order to process various text
and graphic input/output from multiple external sources, EDS
must provide interfaces to the external environment at multiple
levels.

3-1

DS 620344900
30 September 1990

+---------------------- ---------------------
ExenlWord External

Pocessor Files jGraphics Files
---- ---r -- --- ------

------------ ----------------
IDOCUMENT ------------ ---- --------

TAGGER I Graphics
------- +---- +------------- File

------- --- ITranslator
SGML +-------------------- +-------

Userl EDS

I Electronic DcmnainSystem I
+---------- -+------------------------------------

+-->,j DTD Builder IFile Collector(Editor(s)j Post-
+---------- -------------------------------------- I scrip
ILayout Editori Parser IFormatterl<---+ EPS

+---------- -+------------------------------------

+------------------+----- --------- +------ ---------

IVirtual Terminal
Graphics Protocol

+----------- ---- + PDL
Ivirtual Terminal I------+----------

---------- +------------- I Postscript I

I-----+-------------
+-+ I

+-------------

+--------------------- +-------------
IDevice Driver I +-------------

--- +------------
+------------------ I <Paper>

----------- ------------------
+----------- ----------------

+----------- II
------------ ----------------

<Paper> +---------------------------

<Display>

Figure 3-1 EDS Interface Diagram

3-2

DS 620344900
30 September 1990

These levels can be broken down into the following
categories:

o User interaction
o External file processing
o IISS application programs

The following sections provide descriptions of these interfaces.

3.1.2.1.1 User Interaction

All EDS application programs which require user input use
the Form Processor. The Form Processor interface to an
application consists of callable routines which are used to
control user input/output from predefined forms into the
application's data buffer. The Form Processor insures that all
EDS application programs present a common forms-based user
interface when user input is necessary.

Figure 3-2 illustrates how EDS applications interface with
the Form Processor and Virtual Terminal components of the IISS
environment.

----------------- +
I Device Driver I
----------------- +

I Virtual Terminal Protocol
----------------- + +-------------------

Network FP Call Input/Output >J A I EDS
Transaction <----------------------- APPLICATION
Manager (NTM) Parameters +------------

------------------- I

FP User Interface --------------

Monitor 1< ---------- >1 FD Files I
+- -- -- -------- --------------

Form Processor + -------------------- >+
Callable Routinesl<-+ -------

- ------------- FDL Files
-------- +------------- --------------- +--------------
I Message Files II ui Database I

----------------- ---------------+

Figure 3-2 EDS Application Interface

3-3

DS 620344900
30 September 1990

3.1.2.1.2 External File Processing

External text and graphics files are converted by EDS into
standard file formats which are based on current standards for
document processing and exchange as well as device independent
storage of graphics files. The standards which are used are
SGML for text and Postscript for graphics. A brief description
of these standards and how they are used within EDS is given in
the next several sections.

3.1.2.1.3 IISS Application Programs

By using Postscript as a standard output format for
graphics, IISS applications can produce graphics output for
inclusion within an EDS document.

3.1.2.1.4 Virtual Terminal

The Virtual Terminal is a component of the Integrated
Information Support System (IISS). It is a neutral terminal
that presents a real terminal interface to the user. Althoug.
the Virtual Terminal looks like a real terminal, it is actually
a neutral protocol based on a command set which is translated to
and from device specific commands by device drivers. EDS uses
the Virtual Terminal to image documents so that it may use all
devices supported by the Virtual Terminal.

3.1.2.1.5 Neutral Data Manipulation Language - NDML

The EDS also provides support for accepting reports created
by NDML statements. This would enable one to reference data
base information which would be included within the document
when it is formatted. Th is capability is important for those
documents which must contain the most recent available data each
time they are processed.

3.1.2.1.6 Standard Generalized Markup Language (ISO/8879)

SGML is a language for describing document structures. In
an implementation of SGML, descriptive markup is contained
within a document to indicate where logical elements such as
sections and paragraphs begin and end. Descriptive markup is
information added to a document that enables an application
program to process the document. Descriptive markup is
different from the procedural markup found in word processing
systems or system utilities such as RUNOFF or TBL in the
following ways:

o SGML does not contain any information about the format
of a document (bold, underline, etc.).

o The tags which are used to define logical elements are
human-readable and can be entered via text editors.

While SGML does not define a standard set of tags which are
used for descriptive markup of a document, it does define a

3-4

DS 620344900
30 September 1990

language for describing a document structure. The set of SGML
statements which define this structure is called a document type
definition. A document type definition defines which logical
elements may occur within the document and the order in which
they may occur. Applications which are part of EDS use the
document type definition as a source of information which can be
used to check an instance of a document for conformance to a
documentation standard.

SGML also provides for the inclusion of graphics files (of
any format) within a document. Using the ENTITY statement, one
can specify that the contents of an external file (either
graphics or text) is to be included at a particular place in a
document. SGML does not provide any facility for processing the
graphics files. Other applications within EDS must interpret
the graphical data and format both the text and graphics on a
output device.

SGML was chosen for use in EDS because it specifies a
method to both define and check the logical structure of a
document.

3.1.2.1.7 Office Document Architecture/Office Document
Interchange Format (ODA/ODIF - ISO 8613)

Office Document Architecture (ODA) is intended to support
the interchange of electronic compound documents in such a way
as to allow their imaging, processing or reformatting by the
recipient.

ODIF is a method for the encoding of the document structure
defined by ODA which would enable the exchange of compound
documents between systems operating within a MAP/TOP
environment.

In addition, as the ODA/ODIF standard develops, one can
envision the use of ODA application programs within EDS to
perform both logical and layout processing of compound
documents.

3.1.2.1.8 Computer Graphics Metafile (CGM - ANSI X3.122)

The Computer Graphics Metafile provides a file format
suitable for the storage and retrieval of picture description
information. The file format consists of an ordered set of
elements that can be used to describe pictures in a way that is
compatible between systems of different architectures and
devices of differing capabilities and design.

Z.2 DeLailed Functional Requirements

Before discussion of the functional requirements for each
EDS AP, it is important for the user to understand how a
document moves through EDS and where each application program
resides in the document processing model.

3-5

DS 620344900
30 September 1990

3.2.1 Document Processing Model

The document processing model (Figure 3-3) illustrates that
the functions Edit, Format, amd Image are needed for the
production of compound documents in EDS.

DTD
Build

Editor Tagger Layout Editor

++-+ +-----+ ------------
+> ------- >

EDIT FORMAT IMAGE

Ch------ -------------------I CheckI
+-----------

Formatter Virtual Terminal
or

Postscript

Figure 3-3 Document Processing Model

3.2.1.1 Editing Stage

The editing stage of the document processing model focuses
on a document's logical structure, its content, and its
conformance to the documentation standard to which it is being
written. Because other documents which have been created by
word processing systems contain formatting (layout) instructions
within their files, the editing stage must also allow for the
translation of these external documents into documents which
contain only logical structure and document content. To do
this, an EDS application program (TAGGER) first strips the
document of all word processing codes. It then inserts the SGML
tags that define the logical structure of a document into the
document.

A document that contains SGML tags can then be edited,
either by a standard text editor, where the author inserts the
tags, or by a context-sensitive editor, where the system can
either tag the document transparently or inform the author of
which tags are possible at a current document context.

The SGML document type definition, which is created by the
DTDBLD program, is what enables EDS to evaluate how closely a
document conforms to some predefined documentation standard.
The PARSER application compares the DTD to an instance of a

3-6

DS 620344900
30 September 1990

document and reports any errors found in the document markup.
By not allowing any document to be passed to the formatting
stage until it has been checked by the PARSER, EDS is able to
insure that the logical structure requirements of a
documentation standard have been met.

3.2.1.2 Formatting Stage

When the document content is complete, the layout
(formatting instructions) structure must be added to the
document to prepare it for imaging. At this time, the author's
participation in creating the document ends, and responsibility
for the document is transferred to someone in a document
publishing role.

In addition to logical structure requirements, it is common
that documentation standards call for specific layout structures
to be used when a document is printed. For example, a
documentation standard may require that all section titles be
centered and underlined, or that all figure titles be printed in
a certain font. In order to conform to these layout
requirements, the Layout Editor application program enables one
to specify how logical structure elements in a document look
when the document is imaged. By building different document
profiles, a document can be imaged with multiple layout styles.

Once a document profile is established for a given document
class, the FORMATTER application program can format an instance
of a document by replacing logical structure tags with
formatting commands contained in the document profile. This
formatted document can then be sent to the document imager
(which in EDS is part of the Formatter) for translation of
formatting commands into a Virtual Terminal command language or
Postscript PDL.

The separation of logical from layout structure in
environments where documents are large offers a number of
advantages over document creation with word processing systems
which embed formatting codes for layout structure. The main
advantages are:

o The author of a document can concentrate on the content
and logical structure of a document.

o Multiple authors of a document are assured that
respective sections will have the same layout style.

" Documents can be reformatted easily to meet new
requirements when a layout requirement in a
documentation standard changes.

3.2.1.3 Imaging Stage

The imaging process uses the layout information contained
in the document to present a document on an output device. As
mentioned above, this involves the translation of the formatting

3-7

DS 620344900
30 September 1990

commands contained in a document instance. The translation may
be into the Virtual Terminal command language or into another
language. The document could then be imaged on any device which
is supported by the Virtual Terminal.

Consideration should be made for the ability of the
translated language and supported devices to incorporate all
aspects of the document instance. In some cases, a "what you
see is what you get" (WYSIWYG) would not be able to incorporate
all aspects of a document instance. The use of Postscript for
imaging a document instance has proven effective and it is this
language that supports EDS.

3.2.2 EDS Functions

When EDS is invoked, the user is presented with the Main
Menu form shown in Figure 3-4.

+---
IISS Electronic Documentation System 4/30/87 12:00:00

Document Processing Functions

E Edit
C Check
F Format
T Translate
P Print

Select Function >

+---

Figure 3-4 EDS Main Menu Screen

Access to EDS functions is controlled by the User Interface
Services Application Definition service. As each function is
selected, either a submenu is displayed or a separate
application is started which inititiates its own dialog with the
user via the Form Processor.

The Edit function displays a menu which enables the user to
use either the SGML Context-Directed editor or a standard text
editor.

The Check function activates the SGML Parser application.

3-8

DS 620344900
30 September 1990

The Format function enables the user to format a document
prior to printing. This function activates the Formatting
application program.

The Translate function displays a menu of available
translator application programs for both text and graphics.

The Print function permits the user to specify where a

formatted document may be printed.

3.2.3 EDS Application Programs

The following sections provide a detailed description of
each EDS application program.

3.2.3.1 Document Type Definition Builder

The Document Type Definition Builder (DTDBLD) is a
forms-driven application which enables users who do not know the
syntax of SGML but know (through document analysis) what the
relationships between the elements of a document are, to build
document type definitions (DTD). For example, in defining the
logical structure of a book, one knows that a book contains
chapters, chapters contain paragraphs, etc. The logical
structure of a document can be expressed as a hierarchy
consisting of parents, children, and groups of parents and
children. The DTDBLD application program enables a user to
define the hierarchy of a document by expressing the
relationships between the parents and children of logical
elements within a document. Information about the order of
logical elements and how many times an element will occur (if at
all) must be supplied by the user.

Along with the document hierarchy, the DTDBLD application
program enables user definition of attributes for elements
within a document. Attributes are used to further qualify a
document element. For example, a book may have a status
attribute which defines whether the book is a "final" or "draft"
version.

As mentioned above, the DTDBLD program enables one to build
a document type definition without having to know how to express
a document hierarchy in SGML syntax. Users that have an
advanced knowledge of SGML can use a standard text editor to
insert some of the more advanced features of SGML into the DTD
if necessary. The Element and Attribute statements which are
used by the DTDBLD program are sufficient for building DTDs
which define a documents logical structure. Other statements,
such as Entity, Shortref, and Datatag are used mainly in
increasing SGML processing efficiency or decreasing the amount
of markup needed in a document. The DTDBLD program preserves
all statements included by the user within a DTD.

3-9

DS 620344900
30 September 1990

3.2.3.1.1 Inputs

The inputs to DTDBLD are:

o User input via form fields of SGML elements.
o SGML elements to be read in from a DTD file.

3.2.3.1.2 Outputs

DTDBLD outputs an SGML document type definition file
written to conform to the Standard Generalized Markup Language
standard. The DTD file is used by several applications within
EDS as a source of information defining what the set of valid
elements in a given document is and in what order the elements
may occur.

3.2.3.1.3 Processing

3.2.3.1.3.1 DTD Directory Form

When the DTDBLD program is executed, the form shown in
Figure 3-5 is displayed.

+--
EDS - Document Type Definition Builder 4/30/87

DTD Name Action (C, D, E)

Action DTD Name Description

REQDOC ICAM Requirements Document
DSDOC ICAM Development Specification
MEMODOC General Purpose Memo

--+

Figure 3-5 DTDBLD DTD Directory Form
This form displays a scrollable list of all existing

document type definitions. The scrolling of DTD directory
entries is accomplished using the Scroll/Page mode defined in
the IISS Terminal Operator Guide.

The user can perform three actions on any existing DTD:
EDIT (E), COPY (C), and DELETE (D). The system will
automatically search for and display any existing DTDs.
Operations upon an existing DTD can be accomplished in two ways:

3-10

DS 620344900
30 September 1990

o The action and the DTD name are entered on the first
input line of the form, followed by the <ENTER> key.

o The cursor is moved via the <TAB> key to the desired DTD
and the command is entered into the action field,
followed by the <ENTER> key.

To create a new DTD, the user must enter the DTD name and
the Edit command. All Delete operations specified are
revalidated by the DTDBLD program.

3.2.3.1.3.2 Document Hierarchy Form

A document type definition (DTD) is an SGML representation
of the hierarchy of all logical elements within a document. As
an example, Figure 3-6 is a partial graph of the document
hierarchy for a document whose root element is BOOK.

+--------------
------------ BOOK -----------------

+---j RON +-------------I LEIR

I TITLE IICONTENTSIIPREFACEI
-- - - -- - --------------

-+-++-+---------
I HEADER fjCHAP TII

+------+--- --------

----- ------- I-------
TITLE II PARAGRAPH I

----------- + ---------------

+-----------+-------------------
+------+- ----- ++----+---- +--------------
I TITLE I PARAGRAPHI IFOOTNOTES IBIBLIOGRAPHYI
+------------------ -- +-----------------+I I

-------- ++------------+
I TITLE I TEXT ITEMI
+--------++------------

Figure 3-6 Graph of Document Hierarchy for a BOOK

3-11

DS 620344900
30 September 1990

Although the graph does not specify how many times each
element may occur (if any), it does express parent-child
relationships within the document hierarchy.

As mentioned above, the purpose of DTDBLD is to enable a
user to define a document structure without having to express
this structure in SGML syntax. This task is accomplished in
DTDBLD by using the document hierarchy form as shown in Figure
3-7.

--
Document Hierarchy 4/30/87 12:00

Common Generic
Level Name Identifier Total Order Group May Inst

Instance Occur May Oc

0 BOOK BK 1 SEQ Zl 1
1 FRONT MATTER FM 1 SEQ Z1 1
2 TITLE TI 1 SEQ IM 1
2 CONTENTS CN 1 SEQ IM
3 HEADER HC 1 SEQ IM
3 CHAPTER TITL T 1 SEQ Z1
2 PREFACE PR 1 SEQ Z1
3 TITLE TI 2 SEQ IM
4 PARAGRAPH P 2 SEQ IM
1 BODY BD 1 SEQ Z1
2 CHAPTER CH 1 SEQ IM
3 TITLE TI 3 SEQ IM
3 PARAGRAPH P 1 SEQ IM

+--

Figure 3-7 Sample Document Hierarchy for BOOK

Figure 3-7 contains entries for our example document
hierarchy of BOOK.

When entering a document hierarchy, the user must enter the
elements in their hierarchical order. This means that levels
for each entry at the highest level must be fully specified
before starting on the next element at the next highest level
(equivalent to walking the tree in a depth first manner). By
entering elements in this manner, the parent-children
relationships of logical elements are defined.

In addition to the LEVEL and COMMON NAME for a Jocument
element, the following additional information must be specified
in order to completely specify a documents logical structure.

Generic Identifier - This is shorthand notation for the Common
Name and is to be used as the SGML tag
name.

3-12

DS 620344900
30 September 1990

Order - Defines the order in which elements on the
same hierarchical level must occur.
Possible values are:

SEQ - elements occur in required order
NSEQ- elements occur in any order
OR - one and only one element occurs
NONE- there are not chielements may occur
only once

Occurrence - Defines how often an element may occur.
Possible values are:

Zl - Zero or one time
ZM - Zero or many times
1M - One or many times

The first line in the Document Fierarchy form is used as a
"search for" template. The user enters a value into one or more
fields of the first line and the system searches for and
displays the first element that matches the entered values.

Scrolling/Paging of document structure elements is
supported via the Scroll/Page mode defined in the IISS Terminal
Operator Guide.

3.2.3.1.3.3 Document Hierarchy Menu Form

The Document Hierarchy Menu form (Figure 3-8) is used to
provide a menu of functions which enable a user to either
display information about the document hierarchy or further
qualify previously defined document elements.

3-13

DS 620344900
30 September 1990

Document Hierarchy Menu 4/30/87 12:00

Subordinates 0
Attributes 0 Common Generic Total
Where Used Name Identifier
Graph BOOK BK 1

--

Figure 3-8 DTD Document Hierarchy Menu Screen

3.2.3.1.3.4 Document Hierarchy Subordinate Form

The Subordinate form (Figure 3-9) displays either a list of
all children of the specified parent or a list of all siblings
of the specified parent.

+---
Document Hierarchy Menu 4/30/87 12:00

Subordinates 3
Attributes 1 Common Generic Total
Where Used Name Identifier
Graph BOOK BK 1

Common Generic
Name Identifier Total Order Occurrence

FRONT MATTER FM 1 SEQ Zi
BODY BD 1 SEQ Zl
REAR MATTER RM 1 SEQ Z1

+---

Figure 3-9 Document Hierarchy Subordinate Form

3-14

DS 620344900
30 September 1990

Using the Subordinate function, the user can textually view
the document hierarchy. The Application keys (Figure 3-10)
enable the user to "walk-through" a document hierarchy using
single keystrokes.

------ +----------+--------------------

PFl PF2 PF3 PF4

7 8 9-

NEXT PREV
OCCUR OCCUR 6 ,

+------+----+------------------ +

DISPLAY DISPLAY1
CHILD SIBLING 3

------- -------- --- - Enter

0

+-----------------------------

Figure 3-10 DTDBLD Application Keypad

The Application Keypad for the Document Hierarchy
Subordinate Form is defined as follows:

o <DISPLAY CHILD> - displays all children of the specified
parent.

o <DISPLAY SIBLING> - displays the siblings (common parent)

of the specified parent.

3.2.3.1.3.5 Document Hierarchy Attribute Form

The Attribute function is used to further qualify document
elements through the use of attributes. The Attribute form
(Figure 3-11) enables the user to specify multiple attributes
for a given element as well as a default value for each
attribute. (The "Status" attribute for the BOOK example is
illustrated in Figure 3-11).

3-15

DS 620344900
30 September 1990

Document Hierarchy Menu 4/30/87 12:00

Subordinates 3
Attributes 1 Common Generic Total
Where Used Name Identifier
Graph BOOK BK 1

Attribute Default
----------- --
STATUS IDRAFT I

+ -------------------------------------
Value
+ -------------------------------------
DRAFT,FINAL

----------- -- +

+---

Figure 3-11 Document Hierarchy Attribute Definition Form

3.2.3.1.3.6 Document Hierarchy Where Used Form

The Where Used form enables the user to display where a
particular logical element is used within the document
hierarchy. Two keys, <NEXT OCCURENCE> and <PREVIOUS OCCURENCE>
(see Figure 3-10), are used to list each occurence of a
particular logical element. The same form used in the
Subordinate function is used for the Where Used function.

3.2.3.1.3.7 Graph Capability in DTDBLD

Additional planned capability for Graphics in the UI will
allow the EDS to accomodate that capability. The DTDBLD
component will be able to support graphical representations of
the document hierarchy.

3-16

DS 620344900
30 September 1990

3.2.3.2 SGML Tagger

The SGML Tagger enables one to specify a translation
between a document in word processing format to an SGML tagged
document. A translation program must be built for each unique
word processor and document type definition that will be used to
process documents. A forms-driven interface is provided to
assist in the specification of pattern matching type statements
that define the mapping between word processor formatting codes
and document content to SGML tags. These statements are used as
input for a generated LEX program that performs the actual
translation of the word processing document.

Typically, word processing files contain both logical and
layout structure information. Formatting codes (character
sequences) are used to represent logical (ex. paragraph) and
layout (ex. page break) information within the document. In
order to tag a document, certain formatting codes are used to
generate SGML tags when they are encountered. For example, if
all Section titles in a document were always centered and
underlined, then a specification statement used by the Tagger
might state that when the character sequence <center><underline>
is recognized, the tag <STITLE> should be written to the output
buffer. A <figure> code might also be used to generate a
<FIGURE> marker.

Along with the formatting codes, the actual content of a
document can be used to generate SGML tags. For example, a user
can specify that any time the character sequence SECTION
<number> is recognized, the </SECTNUM> is written to the output
buffer. Specifications using a combination of content and
formatting codes are also possible.

In addition to the forms-driven interface, the Tagger
consists of the following parts: lexical writer, run-time
processor, and specification storage.

Once all specification statements are entered and
validated, the Tagger invokes the lexical writer to produce a
valid LEX program that corresponds to the specification of the
lexical components supplied by the user.

The run-time processing runs LEX to produce a C program
from the specification file, compiles the result and links it
with a main driver program. This main program can then be used
to tag a word processing document.

After the document has been tagged, it is automatically
sent to the Parser. The output of the Parser (the error report)
provides an indication as to how well the document has been
tagged. The Parser also inserts all end tags in the document.
The Parser uses the DTD as a source of information to decide
when end tags must be generated. Corrections to the markup in
the document can then be made with either the SGML CDE editor or
a text editor.

3-17

DS 620344900
30 September 1990

The efficiency of any word processor/SGML translator is a
function of how many patterns can be defined that can generate
SGML tags. Although it might not be possible to completely taq
a document (so that it passes error free through the Parser), it
is important that the Tagger be able to insert the most common
tags within the document. These tags will typically be those
tags that are end nodes (ex. #PCDATA) in a document hierarchy
(such as a paragraph).

3.2.3.2.1 Inputs

The inputs to the Tagger specification forms are lexical
statements of the following types:

o User C declarations/Initial C statements
o Character class definitions
o State declarations
o Pattern declarations
o Action declarations

An explanation of the syntax and use of these statements is
provided below.

The input to the Tagger LEX program is a document in word
processing format.

3.2.3.2.2 Outputs

The output of the Tagger specification interface is a LEX
program.

The output of the Tagger LEX program is a document in whiich
all word processing format codes have been removed. The
document will contain only the descriptive markup (SGML tags)
for logical structure elements and the document content.

3-18

DS 620344900
30 September 1990

3.2.3.2.3 Processing

The forms-driven user interface allows the user to
create/revise specification statements which will be used to
generate a LEX program. When the user selects the Tagger from
the EDS Main Menu, the following form (Figure 3-12) is
displayed.

EDS - SGML Auto Tagging Facility 4/30/87

Auto Tag Definition File: ds.l

<enter> - Save information to Auto Tag definition file
<pf5> - State definition
<pf6> - Character class definition
<pf7> - Pattern/Action/State definition
<pf8> - C declarations

Figure 3-12 Tagger Main Menu

This form establishes the name of the load/save file and
serves as an entry to the Tagger specification screens. By
entering a file name and pressing <LOAD> (PFl6), the previous
work is cleared and the file is loaded. If a new specification
is being started the template file for the appropriate word
processor must be loaded. When <ENTER> is pressed, the file is
saved. When one of the Action keys <PF5 - PF8> is pressed, a
specification screen is displayed.

3-19

DS 620344900
30 September 1990

3.2.3.2.3.1 Tagger Specification Screens

Each one of the specification screens operate in the same
manner. Each screen has a field at the top for entering new
data, a field at the bottom of each group to indicate the end of
the qroup, and a repeating field in the middle to display
previously entered data. Placing the cursor on a field and
pressing an <ACTION> key (PF5 - PF8) allows the user to modify
the field by bringing up a detail screen. The content of the
bottom field is not part of the specification and cannot be
edited. Pressing <ENTER> adds the contents of the new data
field to the group. Fields can be deleted by moving the cursor
to the desired field and pressing <DELETE>.

Syntax checking is provided for each specification screen
in order to shorten the amount of time needed to create a valid
LEX program.

3.2.3.2.3.2 State Defintions

The state definition screen (Figure 3-13) contains a list
of states which may be used in pattern/state and action
definitions.
+--

EDS - SGML Auto Tagging Facility

State Definition

State Comment
+--------------+--
+--------------+--
TITLE
TITLE1
TOC
BODY
END

+--

Figure 3-13 State Definition Form
States are used to signify that 1) a certain event has

occurred, and 2) specifications can be created which allow only
certain actions to occur in certain states. For example, when a
text SECTION <number> is recognized, the state SECTION will be
set "on". A specification could then be defined which would
recognize Section Titles (defined by <center><underline>
formatting codes) only when the state SECTION was set on.
States are identifiers and may appear in any order. If a state
is used in the pattern/state and action definitions without
being defined in the State Definition Form, a warning is issued.
A comment may also be provided for each state.

3-20

DS 620344900
30 September 1990

3.2.3.2.3.3 Character Class Definition Form

The character class definition form (Figure 3-14) contains
the list of character class names and their regular expression
definitions.

+--
EDS - SGML Auto Tagging Facility 4/30/87

Character Class Definition

Character Class Regular Expression Definition
------------------- +--
------------------- +--
bold on "(#"
bold-off "{\"

+--

Figure 3-14 Character Class Definition Form

3-21

DS 620344900
30 September 1990

The purpose of the character class name is to serve as a
mnemonic for a word processing formatting code. These class
names can then be used in pattern definitions in place of a
regular expression. All character class names must be defined
via this form before they are used in a pattern. If not, a
warning will be issued.

3.2.3.2.3.4 Pattern/State/Action Definition Form

The pattern/state/action definition form (Figure 3-15)
contains a list of patterns and actions.

+--
EDS - SGML Auto Tagging Facility
Pattern/Action/State Definition

Pattern Action
----------------------------- +-------------------------------
----------------------------- +-------------------------------
(und on)?"SECTION" (space)*{n /* Section */
end

+--

Figure 3-15 Pattern/State/Action Definition Form

The syntax of patterns is provided in the next section. An
action can be any valid C statement that would normally occur in
the body of a procedure. The special action "ECHO;" causes the
contents of the input buffer to be output without formatting
information. The special action "BEGIN state name;" sets the
current state to the specified state name. The current state
name is reset if the state name is "0".

3.2.3.2.3.5 C Definition Form

The C Definition form (Figure 3-16) is used to insert C
statements for the LEX module yylex. C statements can be used
to define variables referenced in actions and to perform
initialization of the output document file. For example, the
user might wish to output several tags before processing of the
word processing file begins.

3-22

DS 620344900
30 September 1990

+--
EDS - SGML Auto Tagging Facility
Pattern/Action/State Definition

Pattern Action
+-- --

----------------------------- +-------------------------------
{undon)?"SECTION"{(space}*(n /* Section */
end

+--

Figure 3-16 C Declaration Definition Form

3.2.3.2.3.6 Pattern Specification Syntax

Patterns represent elements of adocument that are to be
tagged. These patterns consist of strings and operators. A
string is a sequence of printable characters. An operator is
one of the following characters:

"\ [" - * + I () $>/ { %<>

3-23

DS 620344900
30 September 1990

The characters <space>, <> (angle brackets), - (karat), %
(percent), and $ (dollar sign) are special characters to LEX and
should be enclosed in double quotes or preceded by a backslash.
Warnings will be issued for improper use.

A pair of double quotes is used to enclose a literal
string: "SECTION 5"

The backslash character (\) when prefixed to an operator is
used to remove the special meaning and allow the operator to be
used as an ordinary character: "This , \", is a double quote"

The karat may be used as the first character in [] so the
Tagger recognizes any character NOT within the class. The
following example recognizes any characters except a, b, or c:
[-abc]

The dash (-) may be used in [] to indicate a range of
characters to be recognized. The following example recognizes
any character from a to z: [a-z]

The question mark (?) is used to indicate that the
preceding element is optional. The following example recognizes
the input strings "ac" and "abc": ab?c?

The plus sign (+) indicates that the preceding element may
occur one or more times. The following example recognizes the
input strings "abc", "abbc", and "abbbc": ab+c

The asterisk character (*) indicates that the preceding
element may occur zero or more times. The following example
recognizes the input strings "ac", "abc", or "abbc": ab*c

The bar character (I indicates that the preceding or
following element may be input. The following example
recognizes the input strings "a" or "b": alb

Parentheses are used to group elements so that they are
considered a single element. The following example recognizes
the input strings "abc" or "def": (abc) j (def)

The slash operator indicates that the preceding regular
expression is recognized only if followed by the regular
expression after the operator. The followinq example recognizes
the input string "abc" if followed by "def": (abc/def)

3-24

DS 620344900
30 September 1990

Curly braces ({)) enclosing a name indicate that the name
within the braces is a character class and should be expanded.

If the curly braces enclose a number, it indicates that the
preceding element may occur the specified number of timc:.:-. The
following example recognizes the input strings "aa", "aac:', and
"aaaa": a{2,4)

3.2.3.3 SGML Parser

The SGML Parser is the application program that determines
how well an instance of a document conforms to a document type
definition which defines a specific documentation standard. The
document type definition is used to specify which logical
structure elements (delimited by SGML tags) to expect within a
document and how often these elements occur.

The Parser must perform a number of tasks when processing a
document. The major tasks it must perform include:

o Read in and validate the specified document type

definition.

o Resolve Entity References.

o Scan the document to identify Tags, Entity References,
and Data Strings.

o Interpret the descriptive markup tags and attributes and
check element relationships against the DTD.

o Expand markup minimization.

o Report errors found in the document markup.

The Parser conforms to the ISO 8879 standard for SGML.
Initial efforts in the development of the Parser will
concentrate on the implementation of the core features of the
SGML standard. These features are as follows:

o DTD validation of ELEMENTS, ATTRIBUTES, ENTITIES
o Omittag start and end tag generation
o Support for SGML declaration
o Error generation for document markup
o Resolution of ENTITY references (for SGML and markup)

3-25

DS 620344900
30 September 1990

3.2.3.3.1 Inputs

The input to the SGML Parser is an SGML Document file.
This file may contain an SGML Declaration; if not, a system
declaration will be input. The file must contain a document
type definition either explicitly or by reference to another
file.

3.2.3.3.2 Outputs

The output of the Parser is a fully marked-up document. A
fully marked-up document consists of the full expansion of SGML
tags (no minimization within the document and all entity
references resolved - both string substitutions and external
files. Any external references to graphics files are not
resolved by the Parser. The Entity statement will be left in
the fully marked-up document to indicate to other EDS
application programs where graphics files are to be included
within the document.

An error report is generated by the Parser if errors are
detected in either the markup or the document type definition.
The types of errors that the SGML Parser recognizes include the
following:

o An error in the SGML Declaration
o An error in the Document Type Definition
o Errors in the descriptive markup
o Failure to resolve an entity reference

3.2.3.3.3 Processing

The SGML Parser conforms to a layered architecture. From
lowest to highest the layers are: Manager, Lexical Analyzer,
Parser, Document Follower, and the Output Writer.

The Input Manager is responsible for keeping track of the
curent source of input - the main document file, a referenced
file, or an Entity definition. It does this by keeping a stack
of input sources so that when a source is exhausted, an entity
end signal is generated and input reverts back to the prior
source. The Input Manager is also responsible for allowing any
back-tracking required by the Lexical Analyzer.

3-26

DS 620344900
30 September 1990

The Lexical Analyzer is responsible for classifying the
input characters and seperating them into recognizable groups
such as delimiters, keywords, numbers, etc. This separation is
highly context-dependant; delimiters are recognized only in
certain contextual modes, keywords are recognized within
declarations but not within literals, etc. Most of the
contextual information is generated and maintained within the
Lexical Analyzer, but some may need to be generated by the
Parser or Document Follower.

The Parser recognizes the various declarations and markup
which may appear in an SGML document. Declaration information
is recorded and used by the Input Manager, Lexical Analyzer, and
Document Follower to affect their subsequent behavior. Any
violations of the SGML syntax are reported by this layer.

The Document Follower is responsible for relati.-' the
marked-up document to the document type definition. It
recognizes and interprets minimized and omitted markup. Any
violations of the structure specified by the document type
defintion are reported by this layer.

The Output Writer is repsonsible for writing out the fully
marked-up document. If it is determined that multiple output
formats are desired for various applications, flags are provided
to specfy the desired format.

The SGML Parser is a batch application which does not
interact with the user. The interface is similar to that of the
Form Definition Language Compiler; both command-line and forms-
based interfaces will be provided.

3.2.3.4 SGML Context-Directed Editor (CDE)

The Context-Directed Editor is an EDS AP which guides a
user through the process of document creation and revision by
using the document type definition as a model for which logical
elements may be included in a document. By informing the user
of which logical elements are valid at any point within the
authoring process, a document which conforms to a specified DTD
is created.

The CDE differs from traditional word processors because it
does not allow the layout style of the document to be specified
when the document is formatted. The user can only "bind" text
and attributes to logical elements within the document. The
layout style for the document is defined by the Layout Macro
Editor. As a result, the author of the document does not "see"
the final form document as it is edited.

3.2.3.4.1 Inputs

The inputs to CDE are a document type definition, an
existing document to be revised (if present), and user input of
document content.

3-27

DS 620344900
30 September 1990

3.2.3.4.2 Outputs

The output of CDE is a document which contains both

descriptive markup and document content.

3.2.3.4.3 Processing

When the user selects CDE from the EDS main menu, the form
illustrated in Figure 3-17 is displayed.

--
IISS Electronic Documentation System 4/30/87 12:00

SGML Context-Directed Editor

Document EDS.DS

DTD DSDOC

+--

Figure 3-17 CDE File Input Form

To complete this form, the user must enter the document to
be edited and the name of the document type definition.

3.2.3.4.3.1 CDE Modes

When the user chooses either to edit an existing document
or create a new document, the DTD for the documenc is read in
and used as a template to guide the user through the process of
creating a valid logical structure document. Whe, a user edits
a document, CDE will always be operating in two modes -
text/edit and context (logical structure) mode. In the Text
Edit mode, CDE uses the Form Processor Text Editing facility to
perform standard text operations (ex. cut, paste, delete line,
etc.) operations on the text of the document. In context mode,
CDE uses the Application keypad (Figure 3-18) to define
functions which operate on the logical structure of a document.
All functions available via the Application keypad are described
in the sections that follow.

3-28

DS 620344900
30 September 1990

------ +----------+--------------------

Display Display Display Display
Entity Tags Attr- Context

.bute

Delete
Logical
Element

---------------- ---------

+-----------------------------

Figure 3-18 CDE Application Keypad

3.2.3.4.3.2 CDE Document Editing

If the document specified to be edited exists, it is read
in and displayed on the Document Editing form (Figure 3-19).

--
SECNO SECTION 1

TITLE SCOPE

HDR 1.1 Identification

P This specification establishes the development, t

HDR 1.2 Functional Summary

P EDS is

+---
Context : <FM.SECTION>
Document: EDS.DS Keypad Help = <KEY>

Figure 3-19 CDE Document Editing Screen

3-29

DS 620344900
30 September 1990

The SGML tag names associated with the logical element text
are displayed on the left-hand side of the form. This enables
the user to know which text is being associated with which
logical element.

The document name and the current context are displayed on
the bottom of the form. The current context is an aggregation
of tag names for the current logical element depth. As the user
moves the cursor through a document, the context is updated.
For example, when the cursor is positioned at the SECNO, the
context would be <FM.SECTION.SECNO> indicating that the cursor
is at a section number within a section within the front matter
part of the document.

As the context changes, CDE lists only the SGML tags for
logical elements which are valid in the current context. Valid
tags can be viewed by pressing the <DISPLAY TAGS> key on the
Application keypad.

--
SGML CDE

Valid TAGS for context: <SECTION>

<SECNO>
<TITLE>
<HDR>
<P>

Figure 3-20 Display Tags Form

As an example, if the current context is SECTION, the set
of valid tags are any number of paragraph headers (HDR) or
paragraphs <P>, but only one section number (SECNO) or title
(TITLE). If the user presses the <DISPLAY TAGS> key, the form
illustrated in Figure 3-21 will indicate the set of logical
elemants (TAGS) which are valid in the current context
(SECTION).

3-30

DS 620344900
30 September 1990

When the user enters content for the SECNO and TITLE, the
context changes and only HDR and P tag names are shown on the
Display Tags form.

The editing process consists of a user supplying text for
logical elements within a document. Text can be manipulated via
commands in the Text Edit mode. As described below, the user
can add logical elements to a context as long as they are valid.
The context of the document can be changed at any time, in one
of two ways:

3-31

DS 620344900
30 September 1990

o <LIST CONTEXT> provides a list of all major logical
elements in a document. To change context, select the
context from the list and press <ENTER>. The document
is positioned to the desired context.

o SCROLL/PAGE mode allows the user to to move through a
document, changing context as the cursor moves.

The SGML CDE cperates differently from typical word
processors in that no formatting can be applied to text items in
the document. Only the text for a given logical element can be
entered. All word wrapping, lines between paragraphs, etc. are
ignored until the document is processed by the Formatter.

3.2.3.4.3.3 Logical Element Editing

To add any valid logical element, position the cursor at
the starting point for the logical element within the logical
element form, then type in the name of the desired logical
element name. CDE checks to see that the logical element is in
a valid position.

To delete a logical element from a document, 1os±tion the
cursor to the logical element name and press <DELETE LOGICAL
ELEMENT>. If the CDE determines that the logical element name
is not required, then the logical element along with logical
elements below the logical element content are deleted. For
example, if a SECTION is deleted, all logical elements within
that section are also deleted.

3.2.3.4.3.4 Document Creation

When a document which does not exist is specified, CDE
generates the logical structure template for the first logical
element of the document. The user can then proceed to supply
the text for all logical elements on the form if text is
required.

3.2.3.4.3.5 Optional and Required Logical Elements

The document type definition provides information to the
CDE about which logical elements are required and which are
optional within a document. All required elements are displayed
in bold on the logical element form. The user must supply text
for all logical elements which are required. In addition, no
required logical elements can be deleted from the logical
element form.

3.2.3.4.3.6 Using Entity Names in Documents

Entities in SGML enable the user to use abbreviations for
long string names within a document. The string is then
expanded as the document is processed by the PARSER. However,
only Entity names which have been declared in the document type
definition can be used. The <DISPLAY ENTITY> function displays
the list (Figure 3-21) of all Entity names which have been
declared in the DTD.

3-32

DS 620344900
30 September 1990

--

SGML CDF 4/30/87 12:00

Entity Names for DTD REQDOC

&SGML Standard Generalized Markup Language
&CGM Computer Graphics Metafile

--

Figure 3-21 Display Entity Form

The user references an Entity by placing a & sign before
the Entity name. For example, &SGML would be entered as opposed
to the string Standard Generalized Markup Language.

3-33

DS 620344900
30 September 1990

3.2.3.4.3.7 Assigning Attributes to Logical Elements

Attributes are used in SGML to further qualify logical
elements. The CDE enables the user to specify attributes for
specific logical elements with the <DISPLAY ATTRIBUTE> function.
This function displays all attributes and values for the current
logical element. The user can then edit any attribute value for
this logical element. Figure 3-22 illustrates the Display
Attribute Form.

SGML CDE 4/30/87 12:00:00

Attributes for Logical Element:

<SECTION>

Attribute Name
+-------------

security Set
id ----------------------------------

I u c ts ns I
----------------------- ----------------

Value

--I u I
+-------------

Figure 3-22 Display Attribute Form

3.2.3.5 SGML Layout Macro Builder

The Layout Macro Builder is a forms-driven EDS application
program which assists in the generation of macro files which
contain formatting instructions for classes of documents. These
formatting instructions are used by the Formatter to direct the
presentation of the text on an output device.

3-34

DS 620344900
30 September 1990

All macro files are associated with a unique document
profile name. The document profile name is used to distinguish
which macro files (and formatting instructions) are to be
applied to an instance of a document. There may be multiple
document profiles which could be used to format a particular
document class.

The document profile contains a list of pointers from the
generic identifiers in the DTD that define the logical view of
the document elements to macro files that define the layout view
of a document. The generic identifiers are expanded to allow
the user to specify formatting instructions for specific parts
of a document. For example, the user might wish to format a
paragraph <P> in the preface <PR> differently than a paragraph
in a section <SECT>. The Layout Macro program expands the
generic identifiers to <PR.P> and <SECT.P> and allow the user to
specify macro definitions for each one. When the document is
imaged, paragraphs in the preface will have a different format
than paragraphs in sections.

The layout macro files contain generic formatting
instructions for each generic identifier found in the
descriptive markup of a document. The user constructs macro
files by interacting with a forms-based application that
provides a menu of all possible formatting options that can be
used to lay out a particular section of a document. To
construct a macro for an expanded generic identifier, the user
chooses which formatting options to use in the macro from the
menu and supplies required values for the formatting options.

3.2.3.5.1 Inputs

The inputs to the Layout Macro application consist of user
input via form fields of generic identifier to layout macro file
references, document profile names, layout macro names, and
selection of formatting options and values.

3.2.3.5.2 Outputs

The outputs of the Layout Macro application are document
profiles and layout macro files. The document profile contains
information about what document class the profile is to be used
for, and a list of generic identifier to layout macro file name
references. The layout macro file contains formatting language
statements which define how the content, delimited by a generic
logical identifier, will be presented on the output device.

3.2.3.5.3 Processing

3.2.3.5.3.1 DTD Selection Form

When the user selects the Layout Macro Editor from EDS Main
Menu, a form (Figure 3-23) listing all existing Document Type
Definitions is displayed.

3-35

DS 620344900
30 September 1990

--+

EDS Layout Editor 4/30/87 12:00:00

Enter DTD Name or select from list >

DTD Name Description

REQDOC ICAM Requirements Document
DSDOC ICAM Development Specification
IRSDOC Internal Revenue Service Manuals
MEMODOC General Purpose Memo
PSDOC Program Specification

+--

Figure 3-23 Layout Editor - DTD Selection Screen

This form enables the user to specify which document type
to build layout macro instructions for.

3.2.3.5.3.2 Document Profile Form

Once a DTD is selected, the user must specify the document
profile name. The document profile is a file which contains all
macro files used for formatting a document. The Layout Macro
program presents a form (Figure 3-24) which displays a list of
all Document Profiles.

3-36

DS 620344900
30 September 1990

+---

EDS Layout Macro Editor 4/30/87 12:00:00

Document Profile _ __Action (C, D, E)

Document Profile Description

REQDRFT ICAM Requirements Document - DRAFT
REQFNL ICAM Requirements Document - FINAL

--

Figure 3-24 Document Profile Form

Using this form, a user can EDIT, COPY, or DELETE existing
document profiles or CREATE a new document profile.

3.2.3.5.3.3 Macro Selection Form

Once a user selects which document profile to edit, the
Macro Selection form (Figure 3-25) is displayed.

3-37

DS 620344900
30 September 1990

+---

EDS Layout Editor - Macro Selection 4/30/87

DTD : REQDOC Document Profile: REQDRFT

Generic Identifier Macro Name

<SECTION.TITLE> $SECTTL
<SECTION.HDRI> $SECHDR1

+--

Figure 3-25 Macro Selection Form

This form lists all expanded generic identifiers and the
corresponding macro name, if one has been declared. In addition
to the expanded generic identifiers, there is always a macro
name of $DEFAULT which contains all default formatting commands
for the document.

The expanded qeneric identifiers are generated by reading
the SGML elements in the document type definition and building a
tree from the parent and child elements. A binding between
formatting instructions and logical elements can only occur for
those logical elements which are end nodes in the tree. For
example, the following segment of a DTD can be also represented
by tree structure shown in Figure 3-26.

3-38

DS 620344900

30 September 1990

<!ELEMENT section - - (sectno, title, (p I figure))>
<!ELEMENT sectno - - #PCDATA
<!ELEMENT title - - #PCDATA
<!ELEMENT p - - #PCDATA
<!ELEMENT figure - - (figbody, figcap)>
<!ELEMENT figbody - - NDATA
<!ELEMENT figcap - - (figno, figtxt) >
<!ELEMENT figno - - #PCDATA
<!ELEMENT figtxt - - #PCDATA

SECTION

I

SECTNO TITLE P FIGURE

- - FIGBODY FIGCAP
_ _ I
- FIGNO FIGTXTI i

Figure 3-26 Tree Representation of DTD Segment

To generate expanded generic identifiers, a depth first
search can be used. When the end of a tree segment has been
reached, the expanded GI can be constructed from the names of
all the nodes encountered along the way. Terminal nodes in the
tree are typically those elements in the DTD which have #PCDATA
in the logical element content. When a terminal node is
encountered, the program must backtrack to a previous level and
continue traversing other subtrees in the tree. The result of
this traversal for the above example would be the following
generic identifier names:

<SECTION.SECTNO>
<SECTION.TITLE>
<SECTION.P>
<SECTION.FIGURE>
<SECTION.FIGURE.FIGBODY>
<SECTION.FIGURE.FIGCAP.FIGNO>
<SECTION.FIGURE.FIGCAP.FIGTXT>

3.2.3.5.3.4 Format Selection

The user specifies the layout style of a logical element by
selecting and supplying values for the formatting functions.
The actual representation of the formatting functions will be
numerous. The definition of formatting parameters for each
previously defined document element will require several
functions and separate forms for those definitions. An example
of some formatting functions are shown in Figure 3-27.

3-39

DS 620344900
30 September 1990

--

DTD Name : REQDOC
Document Profile : REQDRFT
Macro Name : SECTTL

--

Bold Font Size
Underline __ Pitch
Reverse Left-Indent
Italics __ Right-Indent __

Center

--

Figure 3-27 Format Selection Form

The default value specified in the $DEFAULT macro (or the
system default value if none is specified in $DEFAULT) is used
for any formatting function which is not selected by the user
but is necessary for formatting the document.

The three functions that are performed in this program are
Page Setup, Generic ID Layout, and Headers/Footers. Each of
these functions define specific layout or format requirements.
Page Setup defines margins, line spacing, font style, font size,
etc. The Generic ID Layout defines any format parameters that
are specific to a document element. The Headers/Footers
function defines the header information and the footer
information for processing in the document.

When the user presses <ENTER>, signaling completion of the
form, the Layout Editor program writes all formatting functions
and values input by the user to the document profile macro.

3-40

DS 620344900
30 September 1990

3.2.3.6 SGML Formatter

The function of the Formatter is to create an output
document which contains all control information necessary either
to print or to display the document on an output device. In
order to do this, the Formatter must map the layout style
information contained in a document profile to the logical
elements of a document. In addition, graphics files which are
called for within the document are brought in for processing.

3.2.3.6.1 Inputs

The inputs to the Formatter are as follows:

o User input of the document profile name to be used
to process the document.

o User input of the name of the document to be processed.

o Layout macro files which are referenced within the
document files.

o External graphics files which are found in Entity
references within the document content.

3.2.3.6.2 Outputs

The output of the Formatter is a document which consists of
the document content and all Virtual Terminal Commands necessary
to render the document on any output device supported by the
Virtual Terminal. If errors are detected during the formatting
process, an error report is also generated. These errors
include unresolved entity names and generic identifier to layout
macro file references.

3.2.3.6.3 Processing

When the Formatting option is selected from the EDS Main
Menu, the form illustrated in Figure 3-28 is displayed.

3-41

DS 620344900
30 September 1990

+--
IISS Electronic Documentation System 4/30/87 12:00

Formatter

Document Name : EDS.DS

Document Profile : DEVDRFT

Output File EDS.FMT

Print Document Y

Device Name SDRC$PRINT

Device Type : LN03

+--

Figure 3-28 Formatter Input Form

This form enables the user to supply information about
which document is to be formatted and which document profile is
to be used to format the document.

The Formatter uses a three pass approach to process a
document. The three passes are:

o Pass 1 - Generic identifier (logical element)
expansion/graphics file inclusion

o Pass 2 - Logical element/layout style substitution

In Pass 1, the Formatter must expand the generic
identifiers found in the document, match the expanded generic
identifiers with a layout macro defined in the document profile
for the class of document being processed, and merge all
external graphics files referenced within the document.
Expanded generic identifiers can be generated by using a
stack-based approach when encountering SGML Tags. For example,
a marked document might have the following appearance:

<FM>
<SECTION>
<SECTNO>SECTION 4</SECTNO>
<TTTLE>QUALITY ASSURANCE</TITLE>
<P>This section</p>
</SECTION>

3-42

DS 620344900
30 September 1990

As the document is processed by the Formatter, generic
identifiers are put on a context stack until the end tags are
encountered. When document content is encountered, the expanded
tag name is generated from the stack. This process then
transforms the above document into this form:

<FM.SECTION.SECTNO>SECTION 4
<FM.SECTION.TITLE>QUALITY ASSURANCE
<FM.SECTION.P>This section

In pass 2, the Formatter matches the expanded generic
identifier names generated by pass 1 with generic identifier
names contained in the document profile. When a match is made,
the Formatter reads the Layout Macro file which specifies what
formatting attributes are applied to this logical element. Note
that the Formatter at all times maintains a default attribute
state which can be used in the event that there is no macro
specified for a logical element, or an attribute is left
unspecified in the layout macro (such as font or justification).
The Formatter then inserts a neutral formatting language
statement into the document which replaces the expanded generic
identifier. Our sample document now looks like the following:

<PIR center, font-size = 14>
SECTION 4
<PIR center, underline, font size = 10>
QUALITY ASSURANCE
<PIR left indent=5, font size = 8>

3-43

DS 620344900
30 September 1990

The use of a neutral formatting language to specify the
layout style of logical elements is important because it does
not preclude the use of multiple pass 3 translators. In
addition to using the extended Virtual Terminal command set to
image a document, the neutral formatting language commands can
be translated into a page description language, or into a
command set used by a typesetter. This flexibility enables EDS
to support multiple output devices.

Pass 3 of the Formatter, as mentioned above, translates
formatting commands embedded in the document into either the
external Virtual Terminal protocol (which supports graphics) or
into a formatting command set which can be processed by the
desired output device.

3.2.3.7 Graphics File Translation

EDS includes application programs which enable translation
between external vendor format to Computer Graphics Metafile
(CGM). CGM is used within EDS as the standard format for the
representation and storage of graphical data. These translators
are user selectable via the Translate function listed on the EDS
Main Menu.

3.2.3.8 Text File Translation

Text file translation from word processing formats to SGML
is done by the SGML Tagger application program.

3.3 Performance Requirements

All EDS application programs are programmed using
structured design and coding techniques. Basic programming
standards for readability and ease of debugging are followed.
EDS applications are implemented using the C programming
language to insure the portability of EDS with a minimum of
effort.

3.3.1 Program Organization

The modular design and the use of standards for document
exchange and graphics files enable new applications to be added
to EDS in a straightforward way.

3-44

DS 620344900
30 September 1990

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction and Definitions

"Testing" is a systematic process that may be preplanned
and explicitly stated. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. "Debugging" is the process and correction of the
cause of the error.

"Antibugging" is defined as the philosophy of writing
programs in such a way as to make bugs less likely to occur and,
when they do occur, to make them more noticeable to the
programmer and to the user. This is done by incorporating as
much error checking as possible in each routine.

4.2 Computer Programming Test and Evaluation

EDS as a document processing system will be tested by
processing IISS documents which are currently in the WPS format.
The documents will be processed by each EDS application program
with the objective that the final form document produced by the
Formatter should match the layout style of the original WPS
document.

4-1

DS 620344900
30 September 1990

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software is the
Integrated Information Support System (IISS) Test Bed site
located at Arizona State University, Tempe, Arizona. The
software associated with each EDS CPCI release will be delivered
on a medium which is compatible with the IISS Testbed. The
release will be clearly identified and will include instructions
to be followed for installation of the release.

5-1
U.S. Government Printing Office 648-127

